44 research outputs found

    Trusted Energy-Efficient Cloud-based Services Brokerage Platform

    Get PDF
    The use of cloud computing can increase service efficiency and service level agreements for cloud users, by linking them to an appropriate cloud service provider, using the cloud services brokerage paradigm. Cloud service brokerage represents a promising new layer which is to be added to the cloud computing network, which manages the use, performance and delivery of cloud services, and negotiates relationships between cloud service providers and cloud service consumers. The work presented in this paper studies the research related to cloud service brokerage systems along with the weaknesses and vulnerabilities associated with each of these systems, with a particular focus on the multicloud-based services environment. In addition, the paper will conclude with a proposed multi-cloud framework that overcomes the weaknesses of other listed cloud brokers. The new framework aims to find the appropriate data centre in terms of energy efficiency, QoS and SLA. Moreover, it presents a security model aims to protect the proposed multicloud framework and highlights the key features that must be available in multi-cloud-based brokerage systems

    A Survey of Resource Management Challenges in Multi-cloud Environment: Taxonomy and Empirical Analysis

    Get PDF
    Cloud computing has seen a great deal of interest by researchers and industrial firms since its first coined. Different perspectives and research problems, such as energy efficiency, security and threats, to name but a few, have been dealt with and addressed from cloud computing perspective. However, cloud computing environment still encounters a major challenge of how to allocate and manage computational resources efficiently. Furthermore, due to the different architectures and cloud computing networks and models used (i.e., federated clouds, VM migrations, cloud brokerage), the complexity of resource management in the cloud has been increased dramatically. Cloud providers and service consumers have the cloud brokers working as the intermediaries between them, and the confusion among the cloud computing parties (consumers, brokers, data centres and service providers) on who is responsible for managing the request of cloud resources is a key issue. In a traditional scenario, upon renting the various cloud resources from the providers, the cloud brokers engage in subletting and managing these resources to the service consumers. However, providers’ usually deal with many brokers, and vice versa, and any dispute of any kind between the providers and the brokers will lead to service unavailability, in which the consumer is the only victim. Therefore, managing cloud resources and services still needs a lot of attention and effort. This paper expresses the survey on the systems of the cloud brokerage resource management issues in multi-cloud environments

    An energy-aware service composition algorithm for multiple cloud-based IoT applications

    Get PDF
    There has been a shift in research towards the convergence of the Internet-of-Things (IoT) and cloud computing paradigms motivated by the need for IoT applications to leverage the unique characteristics of the cloud. IoT acts as an enabler to interconnect intelligent and self-configurable nodes “things” to establish an efficient and dynamic platform for communication and collaboration. IoT is becoming a major source of big data, contributing huge amounts of streamed information from a large number of interconnected nodes, which have to be stored, processed, and presented in an efficient, and easily interpretable form. Cloud computing can enable IoT to have the privilege of a virtual resources utilization infrastructure, which integrates storage devices, visualization platforms, resource monitoring, analytical tools, and client delivery. Given the number of things connected and the amount of data generated, a key challenge is the energy efficient composition and interoperability of heterogeneous things integrated with cloud resources and scattered across the globe, in order to create an on-demand energy efficient cloud based IoT application. In many cases, when a single service is not enough to complete the business requirement; a composition of web services is carried out. These composed web services are expected to collaborate towards a common goal with large amount of data exchange and various other operations. Massive data sets have to be exchanged between several geographically distributed and scattered services. The movement of mass data between services influences the whole application process in terms of energy consumption. One way to significantly reduce this massive data exchange is to use fewer services for a composition, which need to be created to complete a business requirement. Integrating fewer services can result in a reduction in data interchange, which in return helps in reducing the energy consumption and carbon footprint. This paper develops a novel multi-cloud IoT service composition algorithm called (E2C2) that aims at creating an energy-aware composition plan by searching for and integrating the least possible number of IoT services, in order to fulfil user requirements. A formal user requirements translation and transformation modelling and analysis is adopted for the proposed algorithm. The algorithm was evaluated against four established service composition algorithms in multiple cloud environments (All clouds, Base cloud, Smart cloud, and COM2), with the results demonstrating the superior performance of our approach

    Microwaves effectively examine the extent and type of coking over acid zeolite catalysts

    Get PDF
    Coking leads to the deactivation of solid acid catalyst. This phenomenon is a ubiquitous problem in the modern petrochemical and energy transformation industries. Here, we show a method based on microwave cavity perturbation analysis for an effective examination of both the amount and the chemical composition of cokes formed over acid zeolite catalysts. The employed microwave cavity can rapidly and non-intrusively measure the catalytically coked zeolites with sample full body penetration. The overall coke amount is reflected by the obtained dielectric loss (ε″) value, where different coke compositions lead to dramatically different absorption efficiencies (ε″/cokes’ wt%). The deeper-dehydrogenated coke compounds (e.g., polyaromatics) lead to an apparently higher ε″/wt% value thus can be effectively separated from lightly coked compounds. The measurement is based on the nature of coke formation during catalytic reactions, from saturated status (e.g., aliphatic) to graphitized status (e.g., polyaromatics), with more delocalized electrons obtained for enhanced Maxwell–Wagner polarization

    PLC Virtualization and Software Defined Architectures in Industrial Control Systems

    Get PDF
    Today’s automation systems are going through a transition called Industry 4.0, referring to the Fourth Industrial Revolution. New concepts, such as cyber-physical systems, mi-croservices and Smart Factory are introduced. This brings up the question of how some of these new technologies can be utilized in Industrial Control Systems. Machines and production lines are nowadays controlled by hardware PLCs and this is considered as a state-of-the-art solution. However, the market demands are continuously increasing and pushing the industry e.g. to lower the operational costs and to develop more agile solutions. Industry 4.0 provides promising approaches to take a step forward and consider PLC virtualization. The purpose of this thesis was to evaluate PLC virtualization possibilities using different Software Defined Architectures. Requirements and benefits of different solutions were evaluated. The major objective of the case study was to compare container- and hypervisor-based virtualization solutions using Docker and KVM. The case study provides a modular and scalable IIoT solution in which a virtual PLC takes over the control instead of a hardware PLC. Node-RED was used as a runtime environment and an I/O-module was needed to set up a control loop test. Response time of the control loop was measured by capturing Modbus traffic with tcpdump. Multiple iterations were performed to show minimum, maximum, average, median and 90th pctl. latencies. The results indicate that the container-based solution has a smaller overhead than the hypervisor-based solution and it has a very little overhead in general. Peak latencies are a concern and even the average latencies show that this solution would not be suitable for any hard real-time or safety-related applications. Further investigation on the topic would be needed to estimate the actual potential of PLC virtualization on hard real-time applications. First of all, a more powerful hardware PC would be needed to perform such tests. Secondly, a faster industrial protocol than Modbus TCP/IP would be required. Perhaps another kind of approach would be needed to overcome the issues that were experienced in this case study. It would be interesting to test a direct communication between virtual PLC and I/O and use Node-RED nodes for example to trigger inputs. Anyhow, it seems that container-based solution is holding much promise as a virtualization approach

    Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    Get PDF
    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks

    Towards a holistic multi-cloud brokerage system: Taxonomy, survey and future directions

    No full text

    Towards a holistic brokerage system for multi-cloud environment

    No full text

    Security-oriented cloud platform for SOA-based SCADA

    No full text

    Progress in Polymeric Micelles for Drug Delivery Applications

    No full text
    Polymeric micelles (PMs) have made significant progress in drug delivery applications. A robust core–shell structure, kinetic stability and the inherent ability to solubilize hydrophobic drugs are the highlights of PMs. This review presents the recent advances and understandings of PMs with a focus on the latest drug delivery applications. The types, methods of preparation and characterization of PMs are described along with their applications in oral, parenteral, transdermal, intranasal and other drug delivery systems. The applications of PMs for tumor-targeted delivery have been provided special attention. The safety, quality and stability of PMs in relation to drug delivery are also provided. In addition, advanced polymeric systems and special PMs are also reviewed. The in vitro and in vivo stability assessment of PMs and recent understandings in this area are provided. The patented PMs and clinical trials on PMs for drug delivery applications are considered indicators of their tremendous future applications. Overall, PMs can help overcome many unresolved issues in drug delivery
    corecore